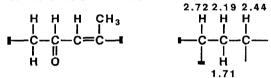

PINTHUNAMIDE, A NEW TRICYCLIC SESQUITERPENE AMIDE PRODUCED BY A FUNGUS, Ampulliferina sp

Yasuo Kimura*, Hiromitsu Nakajima and Takashi Hamasaki Department of Agricultural Chemistry, Tottori University Koyama, Tottori 680, Japan Fumio Sugawara RIKEN (The Institute of Physical and Chemical Research) Wako, Saitama 351-01, Japan Laszlo Parkanyi and Jon Clardy* Baker Laboratory, Department of Chemistry, Cornell University Ithaca, New York 14853-1301

Summary: A new tricyclic sesquiterpene amide, pinthunamide, has been isolated from a fungus, Ampulliferina sp. and its structure was determined by single-crystal x-ray diffraction method together with assignments of ¹H- and ¹³C-NMR data for pinthunamide.

During the course of our screening program for new plant growth regulators among the fungal metabolites, it was found that a fungus, *Ampulliferina* sp. No. 27 produced a new plant growth substance which we have named pinthunamide (1). In this note, we report the isolation and structural elucidation of 1 by single-crystal x-ray diffraction method together with assignments of ¹H- and ¹³C-NMR data.


The fungus was statically cultured in a malt extract medium at 24 °C for 31 days. The culture filtrate was treated with active charcoal at pH 2.0 (*dil.* HCl) and extracted with acetone. After evaporating the solvent, the residual brown solid was purified by column chromatography on silica gel (benzene-acetone) followed by Sephadex LH-20 (MeOH). The active principle thus obtained was recrystallized from ethyl acetate to afford pure needles in a yield of 5 mg per liter of the culture filtrate.

Pinthunamide (1) had the following physicochemical properties: colorless needles (from ethyl acetate); mp 190-193 °C; $[\alpha]_D^{20}$ +73.4° (*c*=1.0, EtOH); C₁₅H₁₉NO₄ (M⁺ obsd. *m/z* 277.1317, calcd. 277.1315); *Anal.* found, C; 64.80, H; 6.90, N; 4.74 %, Calcd., C; 64.96, H; 6.91,

N; 5.05 %. The IR spectrum of 1 (KBr) showed characteristic absorption bands at 3450, 3180 and 1680 (amide) 1760 (γ -lactone), 1675 and 1630 cm⁻¹ (α , β -unsaturated ketone). The UV spectrum also supported the presence of α , β -unsaturated ketone group [UV λ_{max} (EtOH); 232 nm (ϵ 19,000)]. 1 was positive to potassium permanganate and NH₂OH-HCI-FeCI₃, but negative to FeCI₃, *p*-DABA, Ehrlich, Ninhydrin and Dragendorff reactions.

The ¹³C-NMR spectrum¹ of 1 taken in CDCl₃ revealed the fifteen carbon signals indicating seventeen protons directly attached to carbons except for two protons of an amide function. In the ¹H-NMR spectrum of 1, the deuterium exchangeable resonances in D₂O at δ_H 5.88 (br) and 6.18 (br) were assigned to primary amide protons. Proton spin decoupling experiments indicated the presence of an isolated methylene group [δ_H 2.92 (1H, d, *J*=18.4 Hz)], 3.20 (1H, d, *J*=18.4 Hz)] and an allylic methyl group [δ_H 2.25 (3H, d, *J*=1.5 Hz)] coupled to a proton at δ_H 6.85 (1H, d, *J*=1.5 Hz).

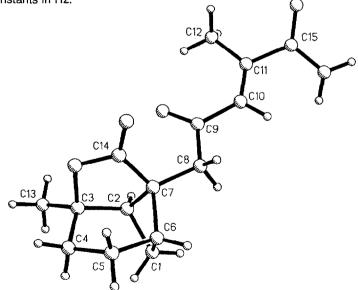
Reduction of 1 with NaBH₄ in MeOH afforded a dihydro derivative (2).² The IR spectrum of 2 showed the presence of -CONH₂ (3450, 3180 and 1675 cm⁻¹), γ -lactone (1760 cm⁻¹) and a double bond (1645 cm⁻¹). However, the absorption band at 1675 cm⁻¹ due to a carbonyl group in 1 had disappeared. The UV maximum at 232 nm of 1 due to a α , β -unsaturated carbonyl group was also not observed. Upon irradiation of the methine signal at $\delta_H 4.77$ (ddd, *J*=8.9, 8.9, 6.2 Hz) of 2 which appeared on the reduction of 1, the signal showed couplings to a vinyl proton at δ_H 6.30 (1H, dd, *J*=1.5, 8.9 Hz) and methylene protons at $\delta_H 2.22$ (1H, dd, *J*=8.9, 14.7 Hz) and 1.83 (1H, m). These results together with ¹H-NMR spin decoupling experiments of 1 showed the presence of two partial structures as shown in below.

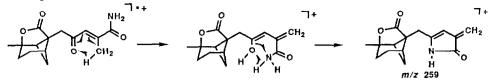
The signal at δ_H 1.71 (1H, d, *J*=10.7 Hz) was only coupled to a proton at δ_H 2.19 (1H, ddd, *J*=10.7, 5,4, 5.4 Hz). The coupling constant (*J*=5.4 Hz) of the signal at δ_H 2.72 appearing as double doublets revealed w-type the long range coupling with the signal at δ_H 2.44 (m).³ These results indicated that the dihedral angles between the signal at δ_H 2.72 and 1.71, and the signal at δ_H 2.44 and 1.71 were approximately 90°, respectively, and these protons must be in a rigid cyclic system.

In order to clarify the entire structure, a x-ray crystallographic analysis was carried out using a single crystal of 1 recrystallized from MeOH-H₂O. Crystals of 1 belonged to the triclinic, space group P1 with a=6.846(1), b=11.079(1), c=10.340(1)Å, $\alpha=77.47(1)$, $\beta=90.04(1)$, $\gamma=108.04(1)^{\circ}$, V=725.99(15)Å³. Z=2. The structure was solved by direct methods, and block diagonal least-squares refinements with the 1914 observed ($|F_0| \ge 3\sigma(F_0)$) reflections, anisotropic nonhydrogen atoms, and isotopic hydrogens have converged to a final R factor of 0.048.⁴

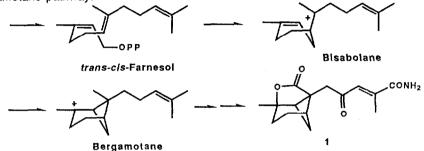
The ¹H- and ¹³C-NMR data for **1** and **2** were assigned from ¹H-¹H COSY, ¹³C-¹H COSY spectrum and proton spin decoupling experiments as shown in Table.

Mass spectral analysis by EI for 1 gave two prominent peaks at m/z 259 (72.60 %) and 165 (19.0 %) together with a base peak at m/z 112 (100%). The fragment ions of m/z 259 and 165 were expected to have been derived from the molecular ion through the loss of H₂O and the


Compoun	ds	1	2	·····
carbon				
number	δς	δн	δc	<u>δ</u> μ
1	23.1 t ^b	1.71 (d, 10.7) ^c	24.8 t	1.75 (d, 10.7)
		2.19 (ddd, 10.7, 5.4, 5.4)		2.32 (ddd, 10.7, 5.4, 5.4)
2	47.6 d	2.72 (dd, 5.4, 5 .4)	49.1 d	2.66 (dd, 5.4, 5.4)
3	88.9 s		90.9 s	
4	30.1 t	1.93 (2H, s)	31.6 t	1.83, 1.9-2.1 (4H, m)
5	23.0 t	1.93 (2H, s)	24.2 t	
6	40.7 d	2.44 (m)	38.0 d	2.46 (m)
7	53.9 s		56.4 s	
8	44.2 t	2.92 (d, 18.4)	44.2 t	1.82 (m)
		3.20 (d, 18.4)		2.22 (d, 14.7, 8.9)
9	198.6 s		67.0 d	4.77 (ddd, 8.9, 8.9, 6.2)
10	128.3 d	6.85 (d, 1.5)	133.0 d	6.30 (dd, 8.9, 1.5)
11	145.2 s		140.4 s	
12	15.1 q	2.25 (d, 1.5)	14.0 q	1.85 (d, 1.5)
13	25.1 q	1.54 (s)	25.9 q	1.43 (s)
14	178.2 s		181.8 s	
15	170.5 s	5.88 (br)	174.8 s	
		6.18 (br)		


Table. ¹³C- and ¹H-NMR spectral data for Pinthunamide 1 and 2.ª

^a 1 in CDCl₃ and 2 in CD₃OD.


^b s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, br=broad.

^c Coupling constants in Hz.

Pinthunamide (1) has a unique structure combining four-, five- and six-membered rings and appears to be biosynthesized through the mevalonate--*trans-cis*-farnesol--bisabolane--bergamotane pathway.⁵

The biological activity was examined on lettuce seedlings according to the method of Frankland and Wareing with some modifications.⁶ Pinthunamide (1) accelerated the root growth by 150 % at a dose of 300 mg/liter over control seedlings. However, 1 at the concentrations tested scarcely affected hypocotyl elongation.

Acknowledgement: The authors thank to Dr. H. Hayashi, Department of Agricultural Chemistry, University of Osaka Prefecture for measuring ¹H-¹H COSY and ¹³C-¹H COSY spectra and MR. Y. Matsuda, a senior student for his help in this study. The Cornell work was partially supported by NSF DCB 8607347.

REFERENCES AND FOOTNOTES

- ¹³C- and ¹H-NMR spectra were obtained on a JEOL GX-270 spectrometer operating at 67.8 MHz and 270 MHz, respectively. Chemical shifts are expressed in ppm using TMS as internal standard.
- 2: mp 164-165 °C. IR ν_{max} (KBr) cm⁻¹: 3450, 3180, 1760, 1675, 1645, 1600, 1200, 1080.
 MS m/z: 279 (M+), 262, 244, 215, 165, 114.
- 3) L. M. Jackman and S. Sternhell, "*Application of Nuclear Magnetic Resonance Spectroscopy in Organic chemistry.*" Pergamon press, Oxford, **1969**, pp. 334-341.
- 4) Crystallographic parameters have been deposited with the Cambgidge Crystalographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K. Please give a complete literature citation when ordering. The other references will have to be renumbered.
- 5) T. K. Devon and A. I. Scott, "*Handbook of Naturally Occurring Compounds*." Vol. II. Terpenes, Academic Press, New York and London, **1972**, p57.
- 6) B. Frankland and P. F. Wareing, *Nature*, **185**, 255 (1960).

(Received in Japan 1 December 1988)